[Home ] [Archive]   [ فارسی ]  
:: Main :: About :: Current Issue :: Archive :: Search :: Submit :: Contact ::
Main Menu
Journal Information::
Articles archive::
For Authors::
For Reviewers::
Registration::
Contact us::
Indexing::
open access policy::
::
Search in website

Advanced Search
..
Receive site information
Enter your Email in the following box to receive the site news and information.
..
Registered in

AWT IMAGE

AWT IMAGE

..
:: Volume 13, Issue 1 (Winter 2024) ::
aumj 2024, 13(1): 63-70 Back to browse issues page
An overview of the Physiome Project; a perspective focusing on interdisciplinary studies in the medical sciences
Roham Mazloom , Gholamreza Bayat , Azadeh Khalili , Mohsen Arabi
Assistant Professor of Physiology, Department of Physiology-Pharmacology-Medical Physics, Alborz University of Medical Sciences, Karaj, Iran
Abstract:   (45 Views)
The concept of the Physiome Project was presented to provide a quantitative description of the physiological dynamics and functional behavior of the intact organism as a whole. The human body is a complex system, and this complexity is present in all components from genes to environment, lifestyle, and aging. The definitive goal of the Physiome Project is to create a "virtual physiological human" by assembling reliable and advanced computational models so that it can be studied and evaluated with a holistic perspective through system's theory in the laboratory and therapeutic settings. This process is started through the creation of modeling at molecular and cellular levels, and by connecting its components with the help of virtual reality, it will be considered as a connected whole to form a virtual physiological human. To achieve this goal in the Physiome Project, other branches of knowledge along with medical sciences are used as interdisciplinary collaborations. Although this project has had various ups and downs, but in general, it has made acceptable progress in applying different sciences together, and therefore, it seems that the process of the Physiome Project can be used to create a suitable model in the formation of interdisciplinary studies.
Keywords: Physiology, Virtual Reality, Systems Theory, Computational Models
Full-Text [PDF 322 kb]   (31 Downloads)    
Type of Study: Research | Subject: Special
Received: 2022/08/21 | Accepted: 2022/11/19 | Published: 2024/02/29
References
1. Kivits J, Ricci L, Minary L. Interdisciplinary research in public health: the 'why'and the 'how'. BMJ Publishing Group Ltd; 2019. p. 1061-2.
2. Bassingthwaighte JB. Strategies for the physiome project. Annals of biomedical engineering 2000;28(8):1043-58. [DOI:10.1114/1.1313771]
3. Coveney PV, Diaz V, Hunter P, Kohl P, Viceconti M. The virtual physiological human. The Royal Society; 2011. p. 281-5.
4. Hunter PJ, Crampin EJ, Nielsen PM. Bioinformatics, multiscale modeling and the IUPS Physiome Project. Briefings in bioinformatics 2008;9(4):333-43. [DOI:10.1093/bib/bbn024]
5. Hunter P, Robbins P, Noble D. The IUPS human physiome project. Pflügers Archiv. 2002;445(1):1-9. [DOI:10.1007/s00424-002-0890-1]
6. Hunter P, Smith N, Fernandez J, Tawhai M. Integration from proteins to organs: the IUPS Physiome Project. Mechanisms of ageing and development 2005;126(1):187-92. [DOI:10.1016/j.mad.2004.09.025]
7. Crampin EJ, Halstead M, Hunter P, Nielsen P, Noble D, Smith N, et al. Computational physiology and the physiome project. Experimental Physiology 2004;89(1):1-26. [DOI:10.1113/expphysiol.2003.026740]
8. Rajagopal V, Arumugam S, Hunter PJ, Khadangi A, Chung J, Pan M. The Cell Physiome: What Do We Need in a Computational Physiology Framework for Predicting Single-Cell Biology? Annu Rev Biomed Data Sci. 2022;5:341-66.
9. Mazloom R. Evidence of the Physiologic Functions of the Gastrointestinal Tract as a Complex System. Foundations of Science 2021;26(2):257-74. [DOI:10.1007/s10699-020-09656-2]
10. Bassingthwaighte J, Hunter P, Noble D. The Cardiac Physiome: perspectives for the future. Experimental physiology 2009;94(5):597-605. [DOI:10.1113/expphysiol.2008.044099]
11. Kofránek J, Kripner T, Andrlík M, Mašek J, editors. Creative connection between multimedia, simulation and software development tools in the design and development of biomedical educational simulators. Simulation Interoperability Workshop, Position papers; 2003.
12. Parodi VA. The Digital Patient: Changing the Paradigm of Healthcare and Impacting Medical Research and Education. The Digital Patient: Advancing Healthcare, Research, and Education 2016:273-88.
13. Garny A, Cooper J, Hunter PJ. Toward a VPH/physiome toolkit. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 2010;2(2):134-47. [DOI:10.1002/wsbm.63]
14. Hunter P, Nielsen P. A strategy for integrative computational physiology. Physiology 2005;20(5):316-25. [DOI:10.1152/physiol.00022.2005]
15. Hunter P. The Virtual Physiological Human: The Physiome Project Aims to Develop Reproducible, Multiscale Models for Clinical Practice. IEEE Pulse 2016;7(4):36-42. [DOI:10.1109/MPUL.2016.2563841]
16. Bradley C, Bowery A, Britten R, Budelmann V, Camara O, Christie R, et al. OpenCMISS: a multi-physics & multi-scale computational infrastructure for the VPH/Physiome project. Progress in biophysics and molecular biology 2011;107(1):32-47. [DOI:10.1016/j.pbiomolbio.2011.06.015]
17. Cooling MT, Nickerson DP, Nielsen PM, Hunter PJ. Modular modelling with Physiome standards. The Journal of physiology 2016;594(23):6817-31. [DOI:10.1113/JP272633]
18. Garny A, Nickerson DP, Cooper J, Santos RWd, Miller AK, McKeever S, et al. CellML and associated tools and techniques. Philosophical transactions of the Royal Society A: Mathematical, physical and engineering sciences 2008;366(1878):3017-43. [DOI:10.1098/rsta.2008.0094]
19. Clerx M, Cooling MT, Cooper J, Garny A, Moyle K, Nickerson DP, et al. CellML 2.0. J Integr Bioinform. 2020;17(2-3).
20. Hunter P. The IUPS Physiome Project: a framework for computational physiology. Progress in biophysics and molecular biology 2004;85(2-3):551-69.
21. Mirams GR, Pathmanathan P, Gray RA, Challenor P, Clayton RH. Uncertainty and variability in computational and mathematical models of cardiac physiology. The Journal of physiology 2016;594(23):6833-47. [DOI:10.1113/JP271671]
22. Hunter PJ, Smith NP. The cardiac physiome project. The Journal of Physiology 2016;594(23):6815. [DOI:10.1113/JP273415]
23. Hill AP, Perry MD, Abi-Gerges N, Couderc JP, Fermini B, Hancox JC, et al. Computational cardiology and risk stratification for sudden cardiac death: one of the grand challenges for cardiology in the 21st century. J Physiol. 2016;594(23):6893-908. [DOI:10.1113/JP272015]
24. Randall Thomas S. Kidney modeling and systems physiology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine 2009;1(2):172-90. [DOI:10.1002/wsbm.14]
25. Nickerson DP, Terkildsen JR, Hamilton KL, Hunter PJ. A tool for multi-scale modelling of the renal nephron. Interface Focus 2011;1(3):417-25. [DOI:10.1098/rsfs.2010.0032]
26. Viceconti M, Hunter P. The Virtual Physiological Human: Ten Years After. Annu Rev Biomed Eng. 2016;18:103-23. [DOI:10.1146/annurev-bioeng-110915-114742]
27. Yu T, Lloyd CM, Nickerson DP, Cooling MT, Miller AK, Garny A, et al. The Physiome Model Repository 2. Bioinformatics 2011;27(5):743-4. [DOI:10.1093/bioinformatics/btq723]
28. Fernandez J, Sartori M, Lloyd D, Munro J, Shim V. Bone remodelling in the natural acetabulum is influenced by muscle force-induced bone stress. Int J Numer Method Biomed Eng. 2014;30(1):28-41. [DOI:10.1002/cnm.2586]
29. Fernandez JW, Shim VB, Hunter PJ. Integrating degenerative mechanisms in bone and cartilage: a multiscale approach. Annu Int Conf IEEE Eng Med Biol Soc. 2012;2012:6616-9. [DOI:10.1109/EMBC.2012.6347511]
30. Shim VB, Hunter PJ, Pivonka P, Fernandez JW. A multiscale framework based on the physiome markup languages for exploring the initiation of osteoarthritis at the bone-cartilage interface. IEEE Trans Biomed Eng. 2011;58(12):3532-6. [DOI:10.1109/TBME.2011.2165955]
31. Cheng L, Du P, O'Grady G. Mapping and modeling gastrointestinal bioelectricity: from engineering bench to bedside. Physiology 2013;28(5):310-7. [DOI:10.1152/physiol.00022.2013]
32. Cheng LK, Komuro R, Austin TM, Buist ML, Pullan AJ. Anatomically realistic multiscale models of normal and abnormal gastrointestinal electrical activity. World journal of gastroenterology: WJG. 2007;13(9):1378. [DOI:10.3748/wjg.v13.i9.1378]
33. Mazloom R. A new approach for digestive disease diagnosis: Dynamics of gastrointestinal electrical activity. Medical Hypotheses. 2019;128:64-8. [DOI:10.1016/j.mehy.2019.05.009]
34. Mazloom R. Possibility of Assessing the Gastrointestinal Tract as a Complex System. Journal of Medical Systems 2019;43(3):1-. [DOI:10.1007/s10916-019-1194-8]
35. Zhao J, McMahon B, Fox M, Gregersen H. The esophagiome: integrated anatomical, mechanical, and physiological analysis of the esophago-gastric segment. Ann N Y Acad Sci. 2018;1434(1):5-20. [DOI:10.1111/nyas.13869]
36. Seo Y, Bang S, Son J, Kim D, Jeong Y, Kim P, et al. Brain physiome: A concept bridging in vitro 3D brain models and in silico models for predicting drug toxicity in the brain. Bioact Mater. 2022;13:135-48. [DOI:10.1016/j.bioactmat.2021.11.009]
Add your comments about this article
Your username or Email:

CAPTCHA


XML   Persian Abstract   Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Mazloom R, Bayat G, Khalili A, Arabi M. An overview of the Physiome Project; a perspective focusing on interdisciplinary studies in the medical sciences. aumj 2024; 13 (1) :63-70
URL: http://aums.abzums.ac.ir/article-1-1602-en.html


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Volume 13, Issue 1 (Winter 2024) Back to browse issues page
نشریه دانشگاه علوم پزشکی البرز Alborz University Medical Journal
Persian site map - English site map - Created in 0.05 seconds with 39 queries by YEKTAWEB 4652