Volume 14, Issue 2 (Spring 2025)                   aumj 2025, 14(2): 140-153 | Back to browse issues page


XML Persian Abstract Print


Download citation:
BibTeX | RIS | EndNote | Medlars | ProCite | Reference Manager | RefWorks
Send citation to:

Rajabloo Z, Mobarak Qamsari E, Kasra Kermanshahi R. Identification and determining the pattern of antibiotic resistance and biofilm formation capacity in bacterial strains isolated from patients with burn wound infection. aumj 2025; 14 (2) :140-153
URL: http://aums.abzums.ac.ir/article-1-1857-en.html
1- Department of Microbiology, Faculty of Biosciences, Alzahra University, Tehran, Iran.
2- Department of Microbiology, Faculty of Biosciences, Alzahra University, Tehran, Iran. , rkasra@yahoo.com
Abstract:   (1137 Views)

Introduction: Burn wound infections caused by antibiotic-resistant bacteria are a significant challenge for patients. This study aimed to isolate antibiotic-resistant strains of Staphylococcus aureus, Klebsiella pneumoniae, Pseudomonas aeruginosa, and Escherichia coli from patients at the Shahid Motahari Burn Hospital in Tehran. Additionally, the ability of these isolated strains to form biofilms was investigated.
Methods: In a cross-sectional study, burn wound swab samples were collected from 120 patients. Biochemical identification was followed by determining antimicrobial susceptibility using the disk diffusion method. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) were determined, along with assessing biofilm formation using 96-well microtiter plates and tetrazolium (TTC) staining.
Results: The percentage of bacteria resistant to at least 5 antibiotics was 60% for K. pneumoniae, 53.33% for S. aureus, 30% for P. aeruginosa, and 13.33% for E. coli. All strains resistant to at least 5 antibiotics had the ability to form biofilms. The high prevalence of antibiotic resistance in Gram-positive S. aureus, coupled with increased biofilm formation among S. aureus, supports the hypothesis that biofilm formation contributes to the development of antibiotic resistance.
Conclusion: The changing pattern of microbial resistance among isolates from burn wound infections necessitates adjustments in antibiotic therapy and may even require non-antibiotic treatment modalities. Systematic determination of the antimicrobial resistance profile of burn wound infection isolates is recommended.

Full-Text [PDF 780 kb]   (371 Downloads)    
Type of Study: Original | Subject: Special
Received: 2024/10/02 | Accepted: 2025/02/23 | Published: 2025/03/03

References
1. Mohapatra S, Gupta A, Agrawal K. Bacteriological profiles in burn patients within first twenty-four hours of injury. Int J Med Microbiol Trop Dis 2016; 2:71-4. [DOI:10.5958/2455-6807.2016.00008.8]
2. Chen YY, Wu PF, Chen CS, Chen IH, Huang WT, Wang FD. Trends in microbial profile of burn patients following an event of dust explosion at a tertiary medical center. BMC Infect Dis 2020; 20:193. [DOI:10.1186/s12879-020-4920-4] [PMID] []
3. Hemmati J, Azizi M, Asghari B, Arabestani MR. Multidrug‐Resistant Pathogens in Burn Wound, Prevention, Diagnosis, and Therapeutic Approaches (Conventional Antimicrobials and Nanoparticles). Can J Infect Dis Med Microbiol 2023; 2023(1):8854311. [DOI:10.1155/2023/8854311] [PMID] []
4. Gupta M, Naik AK, Singh SK. Bacteriological profile and antimicrobial resistance patterns of burn wound infections in a tertiary care hospital. Heliyon 2019; 5(12): e02956. [DOI:10.1016/j.heliyon.2019.e02956] [PMID] []
5. Maslova E, Eisaiankhongi L, Sjöberg F, McCarthy RR. Burns and biofilms: priority pathogens and in vivo models. NPJ Biofilms Microbiomes 2021; 7:73. [DOI:10.1038/s41522-021-00243-2] [PMID] []
6. Thomas RE, Thomas BC. Reducing biofilm infections in burn patients' wounds and biofilms on surfaces in hospitals, medical facilities and medical equipment to improve burn care: a systematic review. Int J Environ Res Public Health 2021; 18:13195. [DOI:10.3390/ijerph182413195] [PMID] []
7. Roy S, Mukherjee P, Kundu S, Majumder D, Raychaudhuri V, Choudhury L. Microbial infections in burn patients. Acute Crit Care 2024; 39(2): 214-225. [DOI:10.4266/acc.2023.01571] [PMID] []
8. Khan BA, Yeh AJ, Cheung GY, Otto M. Investigational therapies targeting quorum-sensing for the treatment of Staphylococcus aureus infections. Expert Opin Investig Drugs 2015; 24:689-704. [DOI:10.1517/13543784.2015.1019062] [PMID] []
9. Bhardwaj S, Bhatia S, Singh S, Franco F Jr. Growing emergence of drug-resistant Pseudomonas aeruginosa and attenuation of its virulence using quorum sensing inhibitors: a critical review. Iran J Basic Med Sci 2021; 24:699-719.
10. Sheridan R, Weber J, Chang P. Multi-drug resistant Gram-negative bacteria colonization and infection in burned children: lessons learned from a 20-year experience. Burns Open 2018; 2:43- 6. [DOI:10.1016/j.burnso.2017.09.002]
11. Wikler MA. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically: approved standard Clsi. 2006; 26:M7-A7
12. Keiri F, Kermanshahi RK, Feizabadi MM. The inhibitory efects of lactobacillus supernatants and their metabolites on the growth and bioflm formation of Klebsiella pneumonia. Infect Disord Drug Targets 2020; 20:902-912. [DOI:10.2174/1871526520666200106122632] [PMID]
13. Azeredo J, Azevedo NF, Briandet R, Cerca N, Coenye T, Costa AR, Desvaux M, Di Bonaventura G, Hébraud M, Jaglic Z, Kačániová M. Critical review on biofilm methods. Crit Rev Microbiol 2017; 43(3):313-351. [DOI:10.1080/1040841X.2016.1208146] [PMID]
14. Gupta M, Naik AK, Singh SK. Bacteriological profile and antimicrobial resistance patterns of burn wound infections in a tertiary care hospital. Heliyon 2019; 5: e02956. [DOI:10.1016/j.heliyon.2019.e02956] [PMID] []
15. Akya A, Najafi F, Sohrabi N, Vaziri S, Mansouri F, Azizi M, Akbarzadeh F. The systematic review of quinolones resistance of Escherichia coli isolated from urinary tract infections in Iran over the last ten years (2001-2011). Annu res rev biol 2015; 6(4):234. [DOI:10.9734/ARRB/2015/12676]
16. Idowu T, Schweizer F. Ubiquitous nature of fluoroquinolones: the oscillation between antibacterial and anticancer activities. Antibiotics 2017; 6(4):26. [DOI:10.3390/antibiotics6040026] [PMID] []
17. Bhatt S, Chatterjee S. Fluoroquinolone antibiotics: Occurrence, mode of action, resistance, environmental detection, and remediation-A comprehensive review. Environ Pollut 2022; 315:120440. [DOI:10.1016/j.envpol.2022.120440] [PMID]
18. Ranjbar R, Tolon SS, Sami M, Golmohammadi R. Detection of plasmid-mediated qnr genes among the clinical quinolone-resistant Escherichia coli strains isolated in Tehran, Iran. Open Microbiol J 2018; 12:248. [DOI:10.2174/1874285801812010248] [PMID] []
19. Henly EL, Dowling JA, Maingay JB, Lacey MM, Smith TJ, Forbes S. Biocide exposure induces changes in susceptibility, pathogenicity, and biofilm formation in uropathogenic Escherichia coli. Antimicrob Agents Chemother 2019; 63(3):10-128. [DOI:10.1128/AAC.01892-18] [PMID] []
20. McCarthy H, Rudkin JK, Black NS et al. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol 2015; 5:1. [DOI:10.3389/fcimb.2015.00001] [PMID] []
21. Maleki L, Tukmechi A. Screening of vancomycin resistance-associated genes in methicillin-resistant Staphylococcus aureus isolates from cattle, sheep and goats in northwestern Iran. Vet Res Forum 2024; 15(3):159-164.
22. S Kakoullis L, Papachristodoulou E, Chra P, Panos G. Mechanisms of antibiotic resistance in important gram-positive and gram-negative pathogens and novel antibiotic solutions. Antibiotics. 2021; 10(4):415. [DOI:10.3390/antibiotics10040415] [PMID] []
23. Jahromi MA, Zangabad PS, Basri SM, Zangabad KS, Ghamarypour A, Aref AR, Karimi M, Hamblin MR. Nanomedicine and advanced technologies for burns: Preventing infection and facilitating wound healing. Adv Drug Deliv Rev 2018; 123:33-64. [DOI:10.1016/j.addr.2017.08.001] [PMID] []
24. Mohamad SM, Rostami S, Zamanzad B, Gholipour A, Drees F. Detection of exotoxins and antimicrobial susceptibility pattern in clinical Pseudomonas aeruginosa Isolates. Avicenna J Clin Microb Infec 2017; 5(2):36-40. [DOI:10.34172/ajcmi.2018.07]
25. Safaei HG, Moghim S, Isfahani BN, Fazeli H, Poursina F, Yadegari S, Nasirmoghadas P, Nodoushan SA. Distribution of the strains of multidrug-resistant, extensively drug-resistant, and pandrug-resistant Pseudomonas aeruginosa isolates from burn patients. Adv Biomed Res 2017; 6(1):74. [DOI:10.4103/abr.abr_239_16] [PMID] []
26. Parsa P, Amirmozafari N, Nowruzi B, Bahar MA. Molecular characterization of polymorphisms among Pseudomonas aeruginosa strains isolated from burn patients' wounds. Heliyon. 2020; 6(12). [DOI:10.1016/j.heliyon.2020.e05041] [PMID] []
27. Liu X, Liu Y. Detection of plasmid-mediated AmpC β-lactamase in Escherichia coli. Biomedical reports 2016; 4(6):687-690. [DOI:10.3892/br.2016.661] [PMID] []
28. Farzi S, Ranjbar R, Niakan M, Ahmadi MH. Molecular characterization of antibiotic resistance associated with TEM and CTX-M ESBL in uropathogenic E. coli strains isolated from outpatients. Iran J Pathol 2021;16(4):386. [DOI:10.30699/ijp.2021.521669.2556] [PMID] []
29. Schilcher K, Horswill AR. Staphylococcal biofilm development: structure, regulation, and treatment strategies. Microbiol Mol Biol Rev 2020; 84(3):10-128. [DOI:10.1128/MMBR.00026-19] [PMID] []
30. Ghasemian S et al. Molecular characterizations of antibiotic resistance, biofilm formation, and virulence determinants of Pseudomonas aeruginosa isolated from burn wound infection. J Clin Lab Anal 2023; 37(4): e24850. [DOI:10.1002/jcla.24850] [PMID] []
31. Nezhad RR, Meybodi SM, Rezaee R, Goudarzi M, Fazeli M. Molecular Characterization and Resistance Profile of Methicillin Resistant Staphylococcus aureus Strains Isolated from Hospitalized Patients in Intensive Care Unit, Tehran-Iran. Jundishapur J Microbiol 2017; 10(3):1-9. [DOI:10.5812/jjm.41666]
32. Nourbakhsh F, Momtaz H. Evaluation of Phenotypic and Genotypic Biofilm Formation in Staphylococcus aureus Isolates from Hospital Infections in Shahrekord. J Arak Uni Med Sci 2015; 19(109):69-79. (In Persian)

Add your comments about this article : Your username or Email:
CAPTCHA

Send email to the article author


Rights and permissions
Creative Commons License This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.

© 2025 CC BY-NC 4.0 | Alborz University Medical Journal

Designed & Developed by : Yektaweb