1. Maskos KJB. Crystal structures of MMPs in complex with physiological and pharmacological inhibitors. 2005;87(3-4):249-63. [
DOI:10.1016/j.biochi.2004.11.019] [
PMID]
2. Mannello F, Medda VJPih, cytochemistry. Nuclear localization of matrix metalloproteinases. 2012;47(1):27-58. [
DOI:10.1016/j.proghi.2011.12.002] [
PMID]
3. Tokuhara CK, Santesso MR, Oliveira GSNd, Ventura TMdS, Doyama JT, Zambuzzi WF, et al. Updating the role of matrix metalloproteinases in mineralized tissue and related diseases. 2019;27. [
DOI:10.1590/1678-7757-2018-0596] [
PMID] [
]
4. Amălinei C, Căruntu I-D, Bălan RAJRJME. Biology of metalloproteinases. 2007;48(4):323-34.
5. Rangasamy L, Di Geronimo B, Ortín I, Coderch C, Zapico JM, Ramos A, et al. Molecular imaging probes based on matrix metalloproteinase inhibitors (MMPIs). 2019;24(16):2982. [
DOI:10.3390/molecules24162982] [
PMID] [
]
6. Huang HJS. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. 2018;18(10):3249. [
DOI:10.3390/s18103249] [
PMID] [
]
7. Zajkowska M, Zbucka-Krętowska M, Sidorkiewicz I, Lubowicka E, Będkowska GE, Gacuta E, et al. Human plasma levels of vascular endothelial growth factor, matrix metalloproteinase 9, and tissue inhibitor of matrix metalloproteinase 1 and their applicability as tumor markers in diagnoses of cervical cancer based on ROC analysis. 2018;25(1):1073274818789357. [
DOI:10.1177/1073274818789357] [
PMID] [
]
8. Goncalves I, Bengtsson E, Colhoun HM, Shore AC, Palombo C, Natali A, et al. Elevated plasma levels of MMP-12 are associated with atherosclerotic burden and symptomatic cardiovascular disease in subjects with type 2 diabetes. 2015;35(7):1723-31. [
DOI:10.1161/ATVBAHA.115.305631] [
PMID]
9. Laronha H, Caldeira JJC. Structure and function of human matrix metalloproteinases. 2020;9(5):1076. [
DOI:10.3390/cells9051076] [
PMID] [
]
10. Gersh I, Catchpole HRJAJoA. The organization of ground substance and basement membrane and its significance in tissue injury, disease and growth. 1949;85(3):457-521. [
DOI:10.1002/aja.1000850304] [
PMID]
11. Huang X, Liu X, Chen F, Wang Y, Li X, Wang D, et al. Clarithromycin affect methane production from anaerobic digestion of waste activated sludge. Journal of Cleaner Production. 2020;255:120321. [
DOI:10.1016/j.jclepro.2020.120321]
12. Verma RP, Hansch CJB, chemistry m. Matrix metalloproteinases (MMPs): Chemical-biological functions and (Q) SARs. 2007;15(6):2223-68. [
DOI:10.1016/j.bmc.2007.01.011] [
PMID]
13. Gross J, Lapiere CMJPotNAoSotUSoA. Collagenolytic activity in amphibian tissues: a tissue culture assay. 1962;48(6):1014. [
DOI:10.1073/pnas.48.6.1014] [
PMID] [
]
14. Whittaker M, Floyd CD, Brown P, Gearing A. Design and therapeutic application of matrix metalloproteinase inhibitors. 1999. [
DOI:10.1002/chin.199948316]
15. Fischer T, Senn N, Riedl RJCAEJ. Design and structural evolution of matrix metalloproteinase inhibitors. 2019;25(34):7960-80. [
DOI:10.1002/chem.201805361] [
PMID]
16. Murphy G, Nagase HJMaom. Progress in matrix metalloproteinase research. 2008;29(5):290-308. [
DOI:10.1016/j.mam.2008.05.002] [
PMID] [
]
17. Cui N, Hu M, Khalil RAJPimb, science t. Biochemical and biological attributes of matrix metalloproteinases. 2017;147:1-73. [
DOI:10.1016/bs.pmbts.2017.02.005] [
PMID] [
]
18. Cerofolini L, Fragai M, Luchinat CJCmc. Mechanism and inhibition of matrix metalloproteinases. 2019;26(15):2609-33. [
DOI:10.2174/0929867325666180326163523] [
PMID]
19. Nagase H, Visse R, Murphy GJCr. Structure and function of matrix metalloproteinases and TIMPs. 2006;69(3):562-73. [
DOI:10.1016/j.cardiores.2005.12.002] [
PMID]
20. Tallant C, Marrero A, Gomis-Rüth FXJBeBA-MCR. Matrix metalloproteinases: fold and function of their catalytic domains. 2010;1803(1):20-8. [
DOI:10.1016/j.bbamcr.2009.04.003] [
PMID]
21. Klein T, Bischoff RJAa. Physiology and pathophysiology of matrix metalloproteases. 2011;41(2):271-90. [
DOI:10.1007/s00726-010-0689-x] [
PMID] [
]
22. Young D, Das N, Anowai A, Dufour AJIjoms. Matrix metalloproteases as influencers of the cells' social media. 2019;20(16):3847. [
DOI:10.3390/ijms20163847] [
PMID] [
]
23. Liu J, Khalil RAJPimb, science t. Matrix metalloproteinase inhibitors as investigational and therapeutic tools in unrestrained tissue remodeling and pathological disorders. 2017;148:355-420. [
DOI:10.1016/bs.pmbts.2017.04.003] [
PMID] [
]
24. Jacobsen JA, Jourden JLM, Miller MT, Cohen SMJBeBA-MCR. To bind zinc or not to bind zinc: an examination of innovative approaches to improved metalloproteinase inhibition. 2010;1803(1):72-94. [
DOI:10.1016/j.bbamcr.2009.08.006] [
PMID]
25. Rydlova M, Holubec L, Ludvikova M, Kalfert D, Franekova J, Povysil CJAr. Biological activity and clinical implications of the matrix metalloproteinases. 2008;28(2B):1389-97.
26. Morgia G, Falsaperla M, Malaponte G, Madonia M, Indelicato M, Travali S, et al. Matrix metalloproteinases as diagnostic (MMP-13) and prognostic (MMP-2, MMP-9) markers of prostate cancer. 2005;33(1):44-50. [
DOI:10.1007/s00240-004-0440-8] [
PMID]
27. Hsu C-P, Shen G-H, Ko J-LJLC. Matrix metalloproteinase-13 expression is associated with bone marrow microinvolvement and prognosis in non-small cell lung cancer. 2006;52(3):349-57. [
DOI:10.1016/j.lungcan.2006.01.011] [
PMID]
28. Vizoso F, Gonzalez L, Corte M, Rodriguez J, Vazquez J, Lamelas M, et al. Study of matrix metalloproteinases and their inhibitors in breast cancer. 2007;96(6):903-11. [
DOI:10.1038/sj.bjc.6603666] [
PMID] [
]
29. Chen SZ, Yao HQ, Zhu SZ, Li QY, Guo GH, Yu JJOl. Expression levels of matrix metalloproteinase-9 in human gastric carcinoma. 2015;9(2):915-9. [
DOI:10.3892/ol.2014.2768] [
PMID] [
]
30. Xu Y, Li Z, Jiang P, Wu G, Chen K, Zhang X, et al. The co-expression of MMP-9 and Tenascin-C is significantly associated with the progression and prognosis of pancreatic cancer. 2015;10(1):1-8. [
DOI:10.1186/s13000-015-0445-3] [
PMID] [
]
31. Peng W-J, Zhang J-Q, Wang B-X, Pan H-F, Lu M-M, Wang JJCca. Prognostic value of matrix metalloproteinase 9 expression in patients with non-small cell lung cancer. 2012;413(13-14):1121-6. [
DOI:10.1016/j.cca.2012.03.012] [
PMID]
32. Liotta LA, Tryggvason K, Garbisa S, Hart I, Foltz C, Shafie SJN. Metastatic potential correlates with enzymatic degradation of basement membrane collagen. 1980;284(5751):67-8. [
DOI:10.1038/284067a0] [
PMID]
33. Konstantinopoulos PA, Karamouzis MV, Papatsoris AG, Papavassiliou AGJTijob, biology c. Matrix metalloproteinase inhibitors as anticancer agents. 2008;40(6-7):1156-68. [
DOI:10.1016/j.biocel.2007.11.007] [
PMID]
34. Rasmussen HS, McCann PPJP, therapeutics. Matrix metalloproteinase inhibition as a novel anticancer strategy: a review with special focus on batimastat and marimastat. 1997;75(1):69-75. [
DOI:10.1016/S0163-7258(97)00023-5] [
PMID]
35. Parsons SL, Watson SA, Steele RJJEJoSO. Phase I/II trial of batimastat, a matrix metalloproteinase inhibitor, in patients with malignant ascites. 1997;23(6):526-31. [
DOI:10.1016/S0748-7983(97)93077-8] [
PMID]
36. Macaulay VM, O'Byrne KJ, Saunders MP, Braybrooke JP, Long L, Gleeson F, et al. Phase I study of intrapleural batimastat (BB-94), a matrix metalloproteinase inhibitor, in the treatment of malignant pleural effusions. 1999;5(3):513-20.
37. King J, Zhao J, Clingan P, Morris DJAr. Randomised double blind placebo control study of adjuvant treatment with the metalloproteinase inhibitor, Marimastat in patients with inoperable colorectal hepatic metastases: significant survival advantage in patients with musculoskeletal side-effects. 2003;23(1B):639-45.
38. Rosenbaum E, Zahurak M, Sinibaldi V, Carducci MA, Pili R, Laufer M, et al. Marimastat in the treatment of patients with biochemically relapsed prostate cancer: a prospective randomized, double-blind, phase I/II trial. 2005;11(12):4437-43. [
DOI:10.1158/1078-0432.CCR-04-2252] [
PMID]
39. Levin VA, Phuphanich S, Alfred Yung W, Forsyth PA, Del Maestro R, Perry JR, et al. Randomized, double-blind, placebo-controlled trial of marimastat in glioblastoma multiforme patients following surgery and irradiation★. 2006;78(3):295-302. [
DOI:10.1007/s11060-005-9098-5] [
PMID]
40. Vandenbroucke RE, Libert CJNrDd. Is there new hope for therapeutic matrix metalloproteinase inhibition? 2014;13(12):904-27. [
DOI:10.1038/nrd4390] [
PMID]
41. Tropsha AJMi. Best practices for QSAR model development, validation, and exploitation. 2010;29(6‐7):476-88. [
DOI:10.1002/minf.201000061] [
PMID]
42. Muratov EN, Bajorath J, Sheridan RP, Tetko IV, Filimonov D, Poroikov V, et al. QSAR without borders. 2020;49(11):3525-64. [
DOI:10.1039/D0CS00098A] [
PMID] [
]
43. Gramatica PJQ, science c. Principles of QSAR models validation: internal and external. 2007;26(5):694-701. [
DOI:10.1002/qsar.200610151]
44. Gramatica PJIJoQS-PR. Principles of QSAR modeling: comments and suggestions from personal experience. 2020;5(3):61-97. [
DOI:10.4018/IJQSPR.20200701.oa1]
45. Abdel-Ilah L, Veljovic E, Gurbeta L, Badnjević AJIJoER, Technology. Applications of QSAR study in drug design. 2017;6(06).
46. Hrabia A. Matrix metalloproteinases (MMPs) and inhibitors of MMPs in the avian reproductive system: an overview. International journal of molecular sciences. 2021;22(15):8056. [
DOI:10.3390/ijms22158056] [
PMID] [
]
47. Cabral-Pacheco GA, Garza-Veloz I, Castruita-De la Rosa C, Ramirez-Acuna JM, Perez-Romero BA, Guerrero-Rodriguez JF, et al. The roles of matrix metalloproteinases and their inhibitors in human diseases. International journal of molecular sciences. 2020;21(24):9739. [
DOI:10.3390/ijms21249739] [
PMID] [
]
48. Wan Y, Li W, Liao Z, Yan M, Chen X, Tang Z. Selective MMP-13 inhibitors: promising agents for the therapy of Osteoarthritis. Current medicinal chemistry. 2020;27(22):3753-69. [
DOI:10.2174/0929867326666181217153118] [
PMID]
49. Mondal S, Banerjee S, Amin S, Jha T. Structural analysis of arylsulfonamide-based carboxylic acid derivatives: A QSAR study to identify the structural contributors toward their MMP-9 inhibition. Structural Chemistry. 2021;32(1):417-30. [
DOI:10.1007/s11224-020-01635-4]
50. Das S, Amin S, Jha T. Insight into the structural requirement of aryl sulphonamide based gelatinases (MMP-2 and MMP-9) inhibitors-Part I: 2D-QSAR, 3D-QSAR topomer CoMFA and Naïve Bayes studies-First report of 3D-QSAR Topomer CoMFA analysis for MMP-9 inhibitors and jointly inhibitors of gelatinases together. SAR and QSAR in Environmental Research. 2021;32(8):655-87. [
DOI:10.1080/1062936X.2021.1955414] [
PMID]
51. Rathee D, Lather V, Dureja H. Prediction of MMP-9 inhibitory activity of N-hydroxy-α-phenylsulfonylacetamide derivatives by pharmacophore based modeling and 3-D QSAR studies. Porto Biomedical Journal. 2018;3(1). [
DOI:10.1016/j.pbj.0000000000000006] [
PMID] [
]