1. Govindarajan DK, Kandaswamy K. Virulence factors of uropathogens and their role in host pathogen interactions. The Cell Surface. 2022;8:100075. [
DOI:10.1016/j.tcsw.2022.100075] [
PMID] [
]
2. Armbruster CE, Mobley HL, Pearson MM. Pathogenesis of Proteus mirabilis infection. EcoSal Plus. 2018;8(1):10.1128/ecosalplus. ESP-0009-2017. [
DOI:10.1128/ecosalplus.esp-0009-2017] [
PMID] [
]
3. Werneburg GT. Catheter-associated urinary tract infections: current challenges and future prospects. Research and reports in urology. 2022:109-33. [
DOI:10.2147/RRU.S273663] [
PMID] [
]
4. Mancuso G, Midiri A, Gerace E, Marra M, Zummo S, Biondo C. Urinary tract infections: the current scenario and future prospects. Pathogens. 2023;12(4):623. [
DOI:10.3390/pathogens12040623] [
PMID] [
]
5. Chakkour M, Hammoud Z, Farhat S, El Roz A, Ezzeddine Z, Ghssein G. Overview of Proteus mirabilis pathogenicity and virulence. Insights into the role of metals. Frontiers in Microbiology. 2024;15:1383618. [
DOI:10.3389/fmicb.2024.1383618] [
PMID] [
]
6. Girlich D, Bonnin RA, Dortet L, Naas T. Genetics of acquired antibiotic resistance genes in Proteus spp. Frontiers in microbiology. 2020;11:256. [
DOI:10.3389/fmicb.2020.00256] [
PMID] [
]
7. Rajab AA, Hegazy WA. What's old is new again: Insights into diabetic foot microbiome. World Journal of Diabetes. 2023;14(6):680. [
DOI:10.4239/wjd.v14.i6.680] [
PMID] [
]
8. Lila ASA, Rajab AA, Abdallah MH, Rizvi SMD, Moin A, Khafagy E-S, et al. Biofilm lifestyle in recurrent urinary tract infections. Life. 2023;13(1):148. [
DOI:10.3390/life13010148] [
PMID] [
]
9. Zhang S, Wang J, Ahn J. Advances in the Discovery of Efflux Pump Inhibitors as Novel Potentiators to Control Antimicrobial-Resistant Pathogens. Antibiotics. 2023;12(9):1417. [
DOI:10.3390/antibiotics12091417] [
PMID] [
]
10. Chetri S. The culmination of multidrug-resistant efflux pumps vs. meager antibiotic arsenal era: Urgent need for an improved new generation of EPIs. Frontiers in Microbiology. 2023;14:1149418. [
DOI:10.3389/fmicb.2023.1149418] [
PMID] [
]
11. Pasqua M, Grossi M, Zennaro A, Fanelli G, Micheli G, Barras F, et al. The varied role of efflux pumps of the MFS family in the interplay of bacteria with animal and plant cells. Microorganisms. 2019;7(9):285. [
DOI:10.3390/microorganisms7090285] [
PMID] [
]
12. Frelet-Barrand A. Lactococcus lactis, an attractive cell factory for the expression of functional membrane proteins. Biomolecules. 2022;12(2):180. [
DOI:10.3390/biom12020180] [
PMID] [
]
13. Brodaczewska KK, Szczylik C, Fiedorowicz M, Porta C, Czarnecka AM. Choosing the right cell line for renal cell cancer research. Molecular cancer. 2016;15:1-15. [
DOI:10.1186/s12943-016-0565-8] [
PMID] [
]
14. Sinha R, Winer AG, Chevinsky M, Jakubowski C, Chen Y-B, Dong Y, et al. Analysis of renal cancer cell lines from two major resources enables genomics-guided cell line selection. Nature communications. 2017;8(1):1-10. [
DOI:10.1038/ncomms15165] [
PMID] [
]
15. Wolf MM, Kimryn Rathmell W, Beckermann KE. Modeling clear cell renal cell carcinoma and therapeutic implications. Oncogene. 2020;39(17):3413-26. [
DOI:10.1038/s41388-020-1234-3] [
PMID] [
]
16. Shapiro DD, Virumbrales-Muñoz M, Beebe DJ, Abel EJ. Models of renal cell carcinoma used to investigate molecular mechanisms and develop new therapeutics. Frontiers in Oncology. 2022;12:871252. [
DOI:10.3389/fonc.2022.871252] [
PMID] [
]
17. Mahon CR, Lehman DC. Textbook of Diagnostic Microbiology-E-Book: Textbook of Diagnostic Microbiology-E-Book: Elsevier Health Sciences; 2022.
18. Hosseini SS, Goudarzi H, Ghalavand Z, Hajikhani B, Rafeieiatani Z, Hakemi-Vala M. Anti-proliferative effects of cell wall, cytoplasmic extract of Lactococcus lactis and nisin through down-regulation of cyclin D1 on SW480 colorectal cancer cell line. Iranian Journal of Microbiology. 2020;12(5):424. [
DOI:10.18502/ijm.v12i5.4603] [
PMID] [
]
19. Mirdamadi S, Agha Ghazvini S. A comparative study between inhibitory effect of L. lactis and nisin on important pathogenic bacteria in Iranian UF Feta cheese. Journal of Microbial Biology. 2015;3(12):79-92.
20. Le Lay C, Fernandez B, Hammami R, Ouellette M, Fliss I. On Lactococcus lactis UL719 competitivity and nisin (Nisaplin®) capacity to inhibit Clostridium difficile in a model of human colon. Frontiers in microbiology. 2015;6:1020. [
DOI:10.3389/fmicb.2015.01020] [
PMID] [
]
21. Dairawan M, Shetty PJ. The evolution of DNA extraction methods. Am J Biomed Sci Res. 2020;8(1):39-45. [
DOI:10.34297/AJBSR.2020.08.001234]
22. Saito R, Sato K, Kumita W, Inami N, Nishiyama H, Okamura N, et al. Role of type II topoisomerase mutations and AcrAB efflux pump in fluoroquinolone-resistant clinical isolates of Proteus mirabilis. Journal of antimicrobial chemotherapy. 2006;58(3):673-7. [
DOI:10.1093/jac/dkl297] [
PMID]
23. Jeng PS, Inoue-Yamauchi A, Hsieh JJ, Cheng EH. BH3-dependent and independent activation of BAX and BAK in mitochondrial apoptosis. Current opinion in physiology. 2018;3:71-81. [
DOI:10.1016/j.cophys.2018.03.005] [
PMID] [
]
24. Karimaei S, Shabestari AN, Mirzaei A, Fatahi B. Apoptosis, cytotoxicity and expression of metastatic suppressor genes increased in human bladder and renal carcinoma cells by Nisin. Translational Research in Urology. 2022;4(2):83-8.