1. M. Husain, A. W. A. Wahab, Y. I. B. Idris, A. T. S. Ho and K.-H. Jung, "Image steganography in spatial domain: A survey", spic journal. 46-66, Jul. 2018.Publisher Site Google Scholar [
DOI:10.1016/j.image.2018.03.012]
2. X. Jin, S. Yin, N. Liu, X. Li, G. Zhao and S. Ge, "Color image encryption in non-RGB color spaces", Multimedia Tools Application, Jun. 2018. 15851-15873.Publisher Site | Google Scholar [
DOI:10.1007/s11042-017-5159-y]
3. M. Suresh and I. Scathes Sam, "High Secure Video Steganography Based on Shuffling of Data on Least Significant DCT Coefficients", 2018 Second International Conference on Intelligent Computing and Control Systems (ICICCS), 2018. 877-882 Publisher Site | Google Scholar [
DOI:10.1109/ICCONS.2018.8662920]
4. S. Zolfaghari, S. B. M. Noor, M. R. Mehrjou, M. H. Marhaban and N. Mariun, "Broken Rotor Bar Fault Detection and Classification using Wavelet Packet Signature Analysis Based on Fourier Transform and Multi-Layer Perceptron Neural Network", Applied Science (MDPI), 2018,288-234. Publisher Site | Google Scholar [
DOI:10.3390/app8010025]
5. Mohammed Shameen Hussain, Thi Phuong Loan Hoang and Christian Langen, "A design for Two dimensional Noncoastal Deslauriers-Dubuc Discrete Wavelet Transformation for Real Time Video Processing on FPGA",2018,435-443. Publisher Site | Google Scholar
6. Asif Nazir,Rehan Ashraf and Taya Handanii "Content based image retrieval system by using HSV color histogram, discrete wavelet transform and edge histogram descriptor",2018,213-220.Publisher Site | Google Scholar [
DOI:10.1109/ICOMET.2018.8346343]
7. Heider, A., Kudu, A., Sarkar, A., &Paladin, K." A Memory-Efficient Image Compression Method Using DWT Applied to Histogram-Based Block Optimization". In Emerging Technologies in Data Mining and Information Security Springer, Singapore.2019,287-295. Publisher Site | Google Scholar [
DOI:10.1007/978-981-13-1501-5_25]
8. Khan, S. Yairi, T. A review on the application of deep learning in system health management. Mech. Syst. Signal Process. 2018, 241-265. Publisher Site | Google Scholar [
DOI:10.1016/j.ymssp.2017.11.024]
9. Liao, Y.X.; Zhang, L.; Li, W.H. regrouping particle swarm optimization based variable neural network for gearbox fault diagnosis. J. Intel. Fuzzy Syst. 2018,3671-3680. Publisher Site | Google Scholar [
DOI:10.3233/JIFS-169542]
10. Zhao, R.; Yan, R.Q.; Chen, Z.H.; Mao, K.Z.; Wang, P.; Goo, R.X. Deep learning and its applications to machine health monitoring. Mech. Syst. Signal Process. 2019, 213-237. Publisher Site | Google Scholar [
DOI:10.1016/j.ymssp.2018.05.050]
11. Candes EJ, Wakin MB. An introduction to compressive sampling. Signal Process Mag IEEE 2008, 21-30. [
DOI:10.1109/MSP.2007.914731]
12. Lustig M, Donoho D, Pauly JM. Sparse MRI: the application of compressed sensing for rapid MR imaging. Magn Reson Med 2007; 58(6):1182-95. [
DOI:10.1002/mrm.21391]
13. Nason GP, Silverman BW. The stationary wavelet transform and some statistical applications. In: Antoniadis A, Oppenheim G, editors. Wavelets and Statistics. New York: Springer; 1995,281-99. [
DOI:10.1007/978-1-4612-2544-7_17]
14. Figueiredo MAT, Nowak RD. An EM algorithm for wavelet-based image restoration. IEEE Trans Image Process 2003, 906-16. [
DOI:10.1109/TIP.2003.814255]
15. Guerquin-Kern M, Haberlin M, Pruessmann KP, Unser M. A fast wavelet-based reconstruction method for magnetic resonance imaging. IEEE Trans Med Imaging 2011, 1649-60. [
DOI:10.1109/TMI.2011.2140121]
16. Selesnick IW, Baraniuk RG, Kingsbury NC. The dual-tree complex wavelet transform. IEEE Signal Process Mag 2005, 123-51. [
DOI:10.1109/MSP.2005.1550194]
17. Do MN, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation. IEEE Trans Image Process 2005, 2091-106. [
DOI:10.1109/TIP.2005.859376]
18. Akhilesh Bijalwan, Aditya Goyal, Nidhi Sethi. Wavelet Transform Based Image Denoise Using Threshold Approaches International Journal of Engineering and Advanced Technology (IJEAT), 2012, 132-137.
19. Figueiredo MAT, Nowak RD. An EM algorithm for wavelet-based image restoration. IEEE Trans Image Process 2003, 906-16. [
DOI:10.1109/TIP.2003.814255]
20. Farhadpour Farhad, Image noise reduction using the proposed derivative filter with fractional orders and genetic algorithm, 3rd International Conference on Electrical and Computer Engineering, 2015.
21. Khairandish Talshamkail, Alireza Mousavi, the referee, improvement of digital image filtering using residual number system, the first conference of new approaches in computer engineering and information technology.